Powers of ideals and the cohomology of stalks and fibers of morphisms
نویسنده
چکیده
We first provide here a very short proof of a refinement of a theorem of Kodiyalam and Cutkosky, Herzog and Trung on the regularity of powers of ideals. This result implies a conjecture of Hà and generalizes a result of Eisenbud and Harris concerning the case of ideals primary for the graded maximal ideal in a standard graded algebra over a field. It also implies a new result on the regularities of powers of ideal sheaves. We then compare the cohomology of the stalks and the cohomology of the fibers of a projective morphism to the effect of comparing the maximums over fibers and over stalks of the Castelnuovo–Mumford regularities of a family of projective schemes.
منابع مشابه
Serre Subcategories and Local Cohomology Modules with Respect to a Pair of Ideals
This paper is concerned with the relation between local cohomology modules defined by a pair of ideals and the Serre subcategories of the category of modules. We characterize the membership of local cohomology modules in a certain Serre subcategory from lower range or upper range.
متن کامل2 00 8 Row Ideals and Fibers of Morphisms
Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion of his 65th birthday. Abstract We study the fibers of projective morphisms and rational maps. We characterize the analytic spread of a homogeneous ideal through properties of its syzygy matrix. Powers of linearly presented ideals need not be linearly presented, but we identify a weaker li...
متن کاملON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS
Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...
متن کاملLocal Cohomology with Respect to a Cohomologically Complete Intersection Pair of Ideals
Let $(R,fm,k)$ be a local Gorenstein ring of dimension $n$. Let $H_{I,J}^i(R)$ be the local cohomology with respect to a pair of ideals $I,J$ and $c$ be the $inf{i|H_{I,J}^i(R)neq0}$. A pair of ideals $I, J$ is called cohomologically complete intersection if $H_{I,J}^i(R)=0$ for all $ineq c$. It is shown that, when $H_{I,J}^i(R)=0$ for all $ineq c$, (i) a minimal injective resolution of $H_{I,...
متن کاملLinear Resolutions of Powers of Generalized Mixed Product Ideals
Let L be the generalized mixed product ideal induced by a monomial ideal I. In this paper we compute powers of the genearlized mixed product ideals and show that Lk have a linear resolution if and only if Ik have a linear resolution for all k. We also introduce the generalized mixed polymatroidal ideals and prove that powers and monomial localizations of a generalized mixed polymatroidal ideal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013